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Comments on the conditions for similitude in electroosmotic flows
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Abstract

This note provides a few comments on the conditions required for similitude between velocity and electric field in electroosmotic flows. The
velocity fields of certain electroosmotic flows with relatively thin electric double layers (EDLs) are known to be irrotational in regions outside
of the EDL. Under restricted conditions, the velocity field, V̄ , can be expressed in terms of the electric field, Ē, as V̄ = cĒ, where c is a scalar
constant. The irrotationality solution is certainly unique and exact for Stokes flow, but may not be stable (or unique) for flows with Reynolds
numbers significantly greater than unity.
© 2007 Elsevier Inc. All rights reserved.
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1. Background

The main subject of the papers of Cummings et al. [1], San-
tiago [2], and Oh and Kang [3] are the specification of the
sufficient and necessary conditions for similitude, and descrip-
tions of sources of vorticity. The Navier–Stokes formulation for
electroosmotic flow (EOF) of a liquid outside of the EDL in an
arbitrary geometry can be expressed in non-dimensional form
as [2]

(1)∇ · V̄ ′ = 0,

(2)St Re ∂V̄ ′/∂t ′ + ReV̄ ′ · ∇′V̄ ′ = −∇′p′ + ∇′2V̄ ′.

Here Re and St are the characteristic Reynolds and Strouhal
numbers and pressure, p, has been scaled by a viscous stress [4].
For relatively thin EDL, the mobile charge regions at the inter-
face between walls and the liquid can be modeled as a slip layer
with the following local property [2]:

(3)V̄ ′ = μ′
0Ē

′,

where μ′
0 is a non-dimensional EOF mobility. This boundary

condition applies to the slip plane (bounding flow regions that
exclude the EDL), and to inlets and outlets. This approximate
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condition supports both a slip and a shear stress that can balance
pressure and inertial forces (i.e., there is no imposed restriction
on the derivative of V̄ ).

2. Mathematical aspects of irrotational electroosmotic
flows

Conditions required [2] for irrotationality of the “outer flow”
(outside EDL) velocity field, V̄ ′, include uniform liquid prop-
erties (including uniform permittivity, viscosity, and conductiv-
ity); uniform electroosmotic mobility; an EDL thickness rela-
tively thin compared to the geometry (so Eq. (3) may be used);
electrically insulating and impermeable channels walls, parallel
flow at inlets and outlets; and equal total (stagnation) pressure at
all inlets and outlets. The three papers discussed above agree on
these as necessary conditions. The following conclusions may
be drawn:

• If we add the restrictions that the flow has both negligible
Re and St Re, then V̄ ′ = μ′

0Ē
′ is an easily verifiable and

unique solution to outer flow Eqs. (1)–(3) (solutions to the
Laplace equation are unique). The (very useful) irrotational
solution has been validated with flow visualization experi-
ments in various studies including [5–8].

• Despite the arguments of Oh and Kang, a proven and ac-
cepted method of exploring solutions of differential equa-
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tions is to propose the form of a solution and apply this
to the governing equation [9] (e.g., this is indeed the strat-
egy behind similarity solutions in fluid mechanics). We can
thereby explore the validity and ramifications of our as-
sumption. If we propose a solution of the form, V̄ ′ = cĒ′
for Eqs. (1)–(3), we come up with a condition [2] that
St Re∂V̄ ′/∂t ′ + ReV̄ ′ · ∇′V̄ ′ = −∇′p′, the Euler formula-
tion, which can here be interpreted as a condition required
for V̄ ′ = μ′

0Ē
′ (and not a governing equation). Evaluating

Eq. (3), we obtain c = μ0. A key question: Is V̄ ′ = μ′
0Ē

′
a solution to the full Eqs. (1)–(3) for all values of Re and
St Re? This question is discussed below.

• For Re → 0 but finite St Re, V̄ ′ = μ′
0Ē

′ is certainly not a
general solution to Eqs. (1)–(3). This has been shown by
various experimental and numerical studies of EOF with
suddenly applied [10–12] and oscillating electric fields
[10,13]. Indeed, it is difficult to imagine an “unsteady
Stokes,” startup problem that is irrotational.

• For St Re → 0 (quasi-steady) but finite Re, Cummings et al.
[1] argue that V̄ ′ = μ′

0Ē
′ is a general solution to Eqs. (1)–

(3) for all Re. In my paper [2], I argue that V̄ ′ = μ′
0Ē

′ is
in fact a solution to Eqs. (1)–(3), but there is no assurance
that this solution is unique. That is, V̄ ′ = μ′

0Ē
′ may not be

a stable solution observable at finite Re. (One analogy here
is pressure-driven Poisseuille flow in a cylindrical channel
[4]; where the parabolic velocity profile is a mathematical
solution at all Re but is not stable or observable at high Re.)
Is V̄ ′ = μ′

0Ē
′ a unique solution for EOF at all Re? I submit

that this is an open problem.
• Oh and Kang’s [3] proposition that irrotationality is first

broken when vorticity advects out of the EDL and into the
outer flow is very interesting. The argument is consistent
with their simulations of flows near channel corners and
should be explored further. The effect they show on EDL
thickness is also interesting and new. One caveat is that
their simulations show significant deviation at Re > 100,
which may be difficult to achieve experimentally.

• One subtle but interesting issue is that, if the EDL has a
finite thickness, the conductivity of the liquid must be uni-
form throughout the entire liquid domain (inside and out-
side the EDL) for irrotationality. At zeta potentials on the
order of (or larger) than the thermal voltage [14], the con-
ductivity in the EDL can be significantly higher than that of
the outer flow. In such cases, area-averaged conductivity of
a channel is a function of its cross-sectional area; so electric
field lines can pass from regions of relatively high conduc-
tivity to regions of low conductivity (e.g., into and out of
the EDL). This situation can clearly generate internal pres-
sure gradients [15] and net charge regions that couple with
applied fields to inject vorticity outside of the EDL [16,17].

3. Observable physics

• A fair question: Is the Re dependence of EOF observable
in a laboratory? It will be very difficult. Typical EOFs have
Re of order unity or less. The electric fields and chan-
nel dimensions needed for Re > 10 quickly develop strong
temperature gradients due to Joule heating [18,19]. For ex-
ample, consider a channel with a depth h that is smaller
than its width w. Conduction heat flux, Joule heating, and
Re all scale as h, so temperature raise in the liquid scales as
�T ≈ κRe2. Here κ = (1/2)σν2/(μ2k), where σ is ionic
conductivity, ν is kinematic viscosity, k is thermal con-
ductivity, and μ is electroosmotic mobility (velocity per
field). κ varies from 3 ◦C for 1 mM aqueous electrolytes
to order 4 × 10−3 ◦C (best case) for acetone and acetoni-
trile [20–22]. This suggests a maximum Re of roughly 40
can be achieved with only a few degrees temperature rise.
Limiting the maximum field to 106 V/m, this requires an
h = ν Re/(μE) ∼ 600 µm or greater. Such length and elec-
tric field scales are highly susceptible to flow instabilities
(see below).

• Further complication is that flow seeding (e.g., with fluo-
rescent microspheres for micron-resolution particle image
velocimetry [23]) of EOFs of organic liquids may be very
difficult as these liquids can dissolve and swell polystyrene,
latex, etc. Colloidal stability of these suspensions may also
be a challenge.

• Even a few degrees temperature rise is probably enough
of a conductivity gradient to invalidate irrotational flows,
and may generate electrokinetic flow instabilities. The lat-
ter are electrohydrodynamic instabilities in the EOF regime
due to conductivity gradients [16,24], and which can cou-
ple with EOF to generate advective and absolute instabil-
ities [17,25]. We observe these instabilities in channels of
100 µm depth with conductivity gradients caused by just
a few degrees temperature rise (due to Joule heating) and
electric fields of order 105 V/m [26]. The critical field for
unstable flow scales as h−1 and the inverse of the square
root of conductivity gradient [25], making electrohydrody-
namically stable flow with higher electric fields and larger
channels very difficult.

• One last and fair question is “Are finite Reynolds number
EOF flows (e.g., order 10 and larger) interesting to the de-
sign of real devices?” I know of no such application, but
will make no predictions here.
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